Visual and Structural Differences Between Amblyopic and Non-Amblyopic Eyes in Patients with Unilateral Amblyopia

Authors

  • Masoud Khorrami-Nejad Optometry Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
  • Alaa khammas Hussein

DOI:

https://doi.org/10.51173/ijmhs.v2i1.27

Keywords:

Amblyopia , Biometry , Axial Length , Lens Thickness , Visual Acuity

Abstract

Background: Amblyopia, define as "lazy eye, a neurodevelopmental disorder, manifests as reduced visual acuity not attributable to structural eye abnormalities.  

Objective of study: This study investigated visual and structural differences between amblyopic and non-amblyopic eyes in children with unilateral amblyopia, focusing on visual acuity, axial length, and lens thickness.      

Materials and Methods:  Twenty-six pediatric patients (5–10 years old) with untreated unilateral functional amblyopia were recruited. Amblyopia was classified as anisometropic, strabismic, or combined. Corrected distance visual acuity (CDVA) was measured in logMAR units. Axial length, anterior chamber depth, and lens thickness were assessed using non-contact optical biometry. Spherical equivalent refractive error was determined via cycloplegic autorefraction. Paired t-tests were used to compare interocular differences.

Results: Amblyopic eyes exhibited significantly reduced CDVA. However, no statistically significant interocular differences were found for spherical equivalent, axial length, anterior chamber depth, or lens thickness (all p > 0.05). Amblyopic eyes showed a trend towards shorter axial lengths (mean difference: -0.27 mm, SD: 0.72), particularly in anisometropic amblyopia (-0.21 mm, SD: 0.85). Anterior chamber depth and lens thickness showed minimal interocular variations across amblyopia types.     

Conclusion: While amblyopic eyes demonstrated reduced visual acuity, interocular differences in biometric parameters were not statistically significant in this small sample. Trends suggest a potential association between amblyopia and shorter axial length, warranting further investigation with larger, longitudinal studies. This research contributes to understanding the ocular and cortical changes in amblyopia, aiming to refine treatment strategies and improve visual outcomes.

References

Hashemi, H., Pakzad, R., Yekta, A., Bostamzad, P., Aghamirsalim, M., Sardari, S., & Khabazkhoob, M. (2018). Global and regional estimates of prevalence of amblyopia: A systematic review and meta-analysis. Strabismus, 26(4), 168-183. DOI: 10.1080/09273972.2018.1500618.

Fu, Z., Hong, H., Su, Z., Lou, B., Pan, C. W., & Liu, H. (2020). Global prevalence of amblyopia and disease burden projections through 2040: a systematic review and meta-analysis. British Journal of Ophthalmology, 104(8), 1164-1170. https://doi.org/10.1136/bjophthalmol-2019-314759.

Gabard-Durnam, L., & McLaughlin, K. A. (2020). Developmental Cognitive Neuroscience, 45, 100798.

Walton, M. M. Neural Mechanisms of Oculomotor Abnormalities in the Infantile Strabismus Syndrome 2 3 Mark MG Walton* Adam Pallus1, 2 Jérome Fleuriet1, 2 Michael J. Mustari1, 2, 3 and Kristina Tarczy-Hornoch2, 4 4 5 6. https://journals.physiology.org/doi/prev/20170410-aop/epdf/10.1152/jn.00934.2016.

Zagui, R. B. (2019). Amblyopia: types, diagnosis, treatment, and new perspectives. American Academy of Ophthalmology, 25, 2-4. https://www.aao.org/education/disease-review/amblyopia-types-diagnosis-treatment-new-perspectiv.

Kaur, S., Sharda, S., Aggarwal, H., & Dadeya, S. (2023). Comprehensive review of amblyopia: Types and management. Indian Journal of Ophthalmology, 71(7), 2677-2686. DOI: 10.4103/IJO.IJO_338_23.

Tong, L. M. (1997). Unifying concepts in mechanism of amblyopia. Medical hypotheses, 48(2), 97-102. https://doi.org/10.1016/S0306-9877(97)90275-9.

Wallace, D. K., Repka, M. X., Lee, K. A., Melia, M., Christiansen, S. P., Morse, C. L., & Sprunger, D. T. (2018). Amblyopia preferred practice pattern®. Ophthalmology, 125(1), P105-P142. http://dx.doi.org/10.1016/j.ophtha.2017.10.008.

Hess, R. F., & Holliday, I. E. (1992). The spatial localization deficit in amblyopia. Vision research, 32(7), 1319-1339. https://doi.org/10.1016/0042-6989(92)90225-8.

Blair, K., Cibis, G., Zeppieri, M., & Gulani, A. (2024). Amblyopia. StatPearls.

Liang, M., Xiao, H., Xie, B., Yin, X., Wang, J., & Yang, H. (2019). Morphologic changes in the visual cortex of patients with anisometropic amblyopia: a surface-based morphometry study. BMC neuroscience, 20, 1-7. https://doi.org/10.1186/s12868-019-0524-6.

Su, T., Zhu, P. W., Li, B., Shi, W. Q., Lin, Q., Yuan, Q., & Shao, Y. (2022). Gray matter volume alterations in patients with strabismus and amblyopia: voxel-based morphometry study. Scientific Reports, 12(1), 458. https://doi.org/10.1038/s41598-021-04184-w.

Wang, G., & Liu, L. (2023). Amblyopia: progress and promise of functional magnetic resonance imaging. Graefe's Archive for Clinical and Experimental Ophthalmology, 261(5), 1229-1246. https://doi.org/10.1007/s00417-022-05826-z.

Gaurisankar, Z. S., van Rijn, G. A., Lima, J. E. E., Ilgenfritz, A. P., Cheng, Y., Haasnoot, G. W., & Beenakker, J. W. M. (2019). Correlations between ocular biometrics and refractive error: a systematic review and meta‐analysis. Acta Ophthalmologica, 97(8), 735-743. https://doi.org/10.1111/aos.14208.

Park, S. H., Park, K. H., Kim, J. M., & Choi, C. Y. (2010). Relation between axial length and ocular parameters. Ophthalmologica, 224(3), 188-193. https://doi.org/10.1159/000252982.

Patel, V. S., Simon, J. W., & Schultze, R. L. (2010). Anisometropic amblyopia: axial length versus corneal curvature in children with severe refractive imbalance. Journal of American Association for Pediatric Ophthalmology and Strabismus, 14(5), 396-398. https://doi.org/10.1016/j.jaapos.2010.07.008.

Cass, K., & Tromans, C. (2008). A biometric investigation of ocular components in amblyopia. Ophthalmic and Physiological Optics, 28(5), 429-440. https://doi.org/10.1111/j.1475-1313.2008.00585.x.

Ghasempour, M., Khorrami-Nejad, M., Safvati, A., & Masoomian, B. (2022). Interocular Axial Length Difference and Treatment Outcomes of Anisometropic Amblyopia. Journal of Ophthalmic & Vision Research, 17(2), 202. doi: 10.18502/jovr.v17i2.10791.

Araki, S., Miki, A., Yamashita, T., Goto, K., Haruishi, K., Ieki, Y., & Kiryu, J. (2014). A comparison between amblyopic and fellow eyes in unilateral amblyopia using spectral-domain optical coherence tomography. Clinical Ophthalmology, 2199-2207. https://www.tandfonline.com/doi/full/10.2147/OPTH.S69501#d1e213.

Rajavi, Z., Moghadasifar, H., Feizi, M., Haftabadi, N., Hadavand, R., Yaseri, M., & Norouzi, G. (2014). Macular thickness and amblyopia. Journal of ophthalmic & vision research, 9(4), 478. doi: 10.4103/2008-322X.150827.

Bullimore, M. A., Slade, S., Yoo, P., & Otani, T. (2019). An evaluation of the IOLMaster 700. Eye & Contact Lens, 45(2), 117-123. DOI: 10.1097/ICL.0000000000000552.

Mutti, D. O., Mitchell, G. L., Jones, L. A., Friedman, N. E., Frane, S. L., Lin, W. K., & Zadnik, K. (2005). Axial growth and changes in lenticular and corneal power during emmetropization in infants. Investigative ophthalmology & visual science, 46(9), 3074-3080. doi:https://doi.org/10.1167/iovs.04-1040.

Troilo, D., Smith, E. L., Nickla, D. L., Ashby, R., Tkatchenko, A. V., Ostrin, L. A., & Jones, L. (2019). IMI–Report on experimental models of emmetropization and myopia. Investigative ophthalmology & visual science, 60(3), M31-M88. doi:https://doi.org/10.1167/iovs.18-25967.

Hess, R. F., Thompson, B., & Baker, D. H. (2014). Binocular vision in amblyopia: structure, suppression and plasticity. Ophthalmic and Physiological Optics, 34(2), 146-162. https://doi.org/10.1111/opo.12123.

Pediatric Eye Disease Investigator Group. (2005). Two-year follow-up of a 6-month randomized trial of atropine vs patching for treatment of moderate amblyopia in children. Archives of ophthalmology, 123(2), 149-157. doi:10.1001/archopht.123.2.149.

Mashige, K. P. (2013). A review of corneal diameter, curvature and thickness values and influencing factors. African Vision and Eye Health, 72(4), 185-194. doi: 10.1371/journal.pone.0260523.

Debert, I., de Alencar, L. M., Polati, M., Souza, M. B., & Alves, M. R. (2011). Oculometric parameters of hyperopia in children with esotropic amblyopia. Ophthalmic and Physiological Optics, 31(4), 389-397. https://doi.org/10.1111/j.1475-1313.2011.00850.x.

BJ, T. C. (1985). The Myopias: basic science and clinical management.

Vincent, S. J., Collins, M. J., Read, S. A., & Carney, L. G. (2012). Monocular amblyopia and higher order aberrations. Vision research, 66, 39-48. https://doi.org/10.1016/j.visres.2012.06.016.

Levi, D. M., Klein, S. A., & Chen, I. (2007). The response of the amblyopic visual system to noise. Vision Research, 47(19), 2531-2542. https://doi.org/10.1016/j.visres.2007.06.014.

Goodyear, B. G., Nicolle, D. A., & Menon, R. S. (2002). High resolution fMRI of ocular dominance columns within the visual cortex of human amblyopes. Strabismus, 10(2), 129-136. https://doi.org/10.1076/stra.10.2.129.8140.

Hamm, L., Chen, Z., Li, J., Black, J., Dai, S., Yuan, J., & Thompson, B. (2017). Interocular suppression in children with deprivation amblyopia. Vision research, 133, 112-120. https://doi.org/10.1016/j.visres.2017.01.004.

Vol. 2. No. 1 (2025): May- 2025 (In press)

Downloads

Published

2025-03-27

How to Cite

Khorrami-Nejad, M., & Hussein , A. khammas. (2025). Visual and Structural Differences Between Amblyopic and Non-Amblyopic Eyes in Patients with Unilateral Amblyopia. Iraqi Journal of Medical and Health Sciences, 2(1), 31–37. https://doi.org/10.51173/ijmhs.v2i1.27

Issue

Section

Medicine ( Miscellaneous)