Efficient Correction of DNA Hetero–Duplexes Formed During SELEX Procedure
DOI:
https://doi.org/10.51173/ijmhs.v1i1.16Keywords:
ssDNA Aptamer , PCR Artifacts , Hetero–Duplexes , PCR Artifact Correction , SELEXAbstract
Background: Aptamers, oligos-based (ssDNA or RNA) and peptide-based, are now emerging as the first-choice biomolecules in various applications in medicine and biology. DNA aptamers selection process includes repeatable steps of DNA amplification and digestion. The amplification process of the enriched DNA aptamers includes using PCR.
Objective of study: In this article, we sought to describe an efficient and robust method that corrects or permanently removes the PCR by–products during the cycles of DNA aptamers selection.
Materials and Methods: Our method is simple, efficient, and requires no enzymatic treatment. In this method, we applied repetitive cycles of thermal treatment to the enriched aptamers final products during the enrichment cycles. The procedure starts with loading the PCR-induced DNA on 1% agarose gel to evaluate the presence of ladder-like DNA or smearing band-like DNA. Next, we cut and purified these by–products and applied thermal treatment. The thermal treatment was by heating the DNA to 65ºC for 10 minutes and then cool them down to 20ºC for 1 minute.
Results: PCR artifacts evaluation has been revealed two types of unwanted DNA sequences; the ladder-like and the smearing bands. The next–Generation illume sequencing specified the presence of long and short sequences. Upon the thermal treatment of the PCR products, the next–generation illume sequencing method results showed that the longer sequences and the shorter sequences of the DNA have been reduced considerably and effectively in the DNA pool over the cycles of the systemic evolution of ligands by exponential enrichment (SELEX) procedure. Furthermore, we could reduce the formation of the hetero–duplexes in the next cycles of (SELEX) procedure.
Conclusion: This method suggests practical and routine application to prevent or reduce DNA aptamer by–products during the selection process. This treatment could reduce the mis-shaped or irrelevant non-functional aptamers in SELEX procedure
References
References
Dollins, C. M., Nair, S., & Sullenger, B. A. (2008). Aptamers in immunotherapy. Human gene therapy, 19(5), 443-450. https://doi:10.1089/hum.2008.045.
Scoville, D. J., Uhm, T. K. B., Shallcross, J. A., & Whelan, R. J. (2017). Selection of DNA aptamers for ovarian cancer biomarker CA125 using one‐Pot SELEX and high‐throughput sequencing. Journal of nucleic acids, 2017(1), 9879135. http://dx.doi.org/10.1155/2017/9879135.
Liu, M., Wang, L., Lo, Y., Shiu, S. C. C., Kinghorn, A. B., & Tanner, J. A. (2022). Aptamer-enabled nanomaterials for therapeutics, drug targeting and imaging. Cells, 11(1), 159. doi: 10.3390/cells11010159.
Ellington, A. D., & Szostak, J. W. (1990). In vitro selection of RNA molecules that bind specific ligands. nature, 346(6287), 818-822. https://doi.org/10.1038/346818a0.
Tuerk, C., & Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. science, 249(4968), 505-510. DOI: 10.1126/science.2200121.
Vorobyeva, M. A., Davydova, A. S., Vorobjev, P. E., Pyshnyi, D. V., & Venyaminova, A. G. (2018). Key aspects of nucleic acid library design for in vitro selection. International journal of molecular sciences, 19(2), 470. https://doi.org/10.3390/ijms19020470.
Avci-Adali, M., Paul, A., Wilhelm, N., Ziemer, G., & Wendel, H. P. (2009). Upgrading SELEX technology by using lambda exonuclease digestion for single-stranded DNA generation. Molecules, 15(1), 1-11. https://doi.org/10.3390/molecules15010001.
Thompson, J. R., Marcelino, L. A., & Polz, M. F. (2002). Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by ‘reconditioning PCR’. Nucleic Acids Research, 30(9), 2083-2088. https://doi.org/10.1093/nar/30.9.2083.
Smyth, R., Schlub, T., Grimm, A., Venturi, V., Chopra, A., Mallal, S., ... & Mak, J. (2010). Reducing chimera formation during PCR amplification. https://doi.org/10.1016/j.gene.2010.08.009.
Tolle, F., Wilke, J., Wengel, J., & Mayer, G. (2014). By-product formation in repetitive PCR amplification of DNA libraries during SELEX. PloS one, 9(12), e114693. DOI:10.1371/journal.pone.0114693.
Qiu, X., Wu, L., Huang, H., McDonel, P. E., Palumbo, A. V., Tiedje, J. M., & Zhou, J. (2001). Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning. Applied and environmental microbiology, 67(2), 880-887. DOI: https://doi.org/10.1128/AEM.67.2.880-887.2001.
Michu, E., Mráčková, M., Vyskot, B., & Žlůvová, J. (2010). Reduction of heteroduplex formation in PCR amplification. Biologia plantarum, 54, 173-176. https://doi.org/10.1007/s10535-010-0029-8.
Golyshev, V. M., Pyshnyi, D. V., & Lomzov, A. A. (2021). Calculation of energy for RNA/RNA and DNA/RNA duplex formation by molecular dynamics simulation. Molecular Biology, 55(6), 927-940. https://doi.org/10.1134/S002689332105006X.
Nüesch, M. F., Pietrek, L., Holmstrom, E. D., Nettels, D., von Roten, V., Kronenberg-Tenga, R., ... & Schuler, B. (2024). Nanosecond chain dynamics of single-stranded nucleic acids. Nature Communications, 15(1), 6010. https://doi.org/10.1038/s41467-024-50092-8.
Wang, R., & Li, Y. (2013). Hydrogel based QCM aptasensor for detection of avian influenzavirus. Biosensors and Bioelectronics, 42, 148-155. https://doi.org/10.1016/j.bios.2012.10.038.
Thiel, W. H., & Giangrande, P. H. (2016). Analyzing HT-SELEX data with the Galaxy Project tools–A web based bioinformatics platform for biomedical research. Methods, 97, 3-10. doi:10.1016/j.ymeth.2015.10.008.
Thiel, W. H. (2016). Galaxy workflows for web-based bioinformatics analysis of aptamer high-throughput sequencing data. Molecular Therapy-Nucleic Acids, 5. http://doi:10.1038/mtna.2016.54.
The Galaxy Community.(2024). The Galaxy platform for accessible, reproducible, and collaborative data analyses: 2024 update. Nucleic Acids Research. 52(W1): W83–W94. https://doi.org/10.1093/nar/gkae410.
Meyers, L. A., Lee, J. F., Cowperthwaite, M., & Ellington, A. D. (2004). The robustness of naturally and artificially selected nucleic acid secondary structures. Journal of Molecular Evolution, 58, 681-691. https://doi.org/10.1007/s00239-004-2590-2.
Thiel, W. H., Bair, T., Wyatt Thiel, K., Dassie, J. P., Rockey, W. M., Howell, C. A., ... & Giangrande, P. H. (2011). Nucleotide bias observed with a short SELEX RNA aptamer library. Nucleic acid therapeutics, 21(4), 253-263. https://doi.org/10.1089/nat.2011.0288.
Acinas, S. G., Sarma-Rupavtarm, R., Klepac-Ceraj, V., & Polz, M. F. (2005). PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Applied and environmental microbiology, 71(12), 8966-8969. DOI: https://doi.org/10.1128/AEM.71.12.8966-8969.2005.
Shao, K., Ding, W., Wang, F., Li, H., Ma, D., & Wang, H. (2011). Emulsion PCR: a high efficient way of PCR amplification of random DNA libraries in aptamer selection. PloS one, 6(9), e24910. doi:10.1371/journal.pone.0024910.
Yufa, R., Krylova, S. M., Bruce, C., Bagg, E. A., Schofield, C. J., & Krylov, S. N. (2015). Emulsion PCR significantly improves nonequilibrium capillary electrophoresis of equilibrium mixtures-based aptamer selection: allowing for efficient and rapid selection of aptamer to unmodified ABH2 protein. Analytical chemistry, 87(2), 1411-1419. https://pubmed.ncbi.nlm.nih.gov/25495441/.
Takahashi, M., Wu, X., Ho, M., Chomchan, P., Rossi, J. J., Burnett, J. C., & Zhou, J. (2016). High throughput sequencing analysis of RNA libraries reveals the influences of initial library and PCR methods on SELEX efficiency. Scientific reports, 6(1), 33697. DOI: 10.1038/srep33697.
Witt, M., Phung, N. L., Stalke, A., Walter, J. G., Stahl, F., von Neuhoff, N., & Scheper, T. (2017). Comparing two conventional methods of emulsion PCR and optimizing of Tegosoft‐based emulsion PCR. Engineering in life sciences, 17(8), 953-958. https://doi.org/10.1002/elsc.201700047.
Eaton, R. M., Shallcross, J. A., Mael, L. E., Mears, K. S., Minkoff, L., Scoville, D. J., & Whelan, R. J. (2015). Selection of DNA aptamers for ovarian cancer biomarker HE4 using CE-SELEX and high-throughput sequencing. Analytical and bioanalytical chemistry, 407, 6965-6973. https://doi.org/10.1007/s00216-015-8665-7.
Blind, M., & Blank, M. (2015). Aptamer selection technology and recent advances. Molecular Therapy-Nucleic Acids, 4. doi:10.1038/mtna.2014.74.
Cheng, L. Y., Dai, P., Wu, L. R., Patel, A. A., & Zhang, D. Y. (2022). Direct capture and sequencing reveal ultra-short single-stranded DNA in biofluids. Iscience, 25(10). https://www.cell.com/iscience/fulltext/S2589-0042(22)01318-9.
McInerney, P., Adams, P., & Hadi, M. Z. (2014). Error rate comparison during polymerase chain reaction by DNA polymerase. Molecular biology international, 2014(1), 287430. http://dx.doi.org/10.1155/2014/287430.
Musheev, M. U., & Krylov, S. N. (2006). Selection of aptamers by systematic evolution of ligands by exponential enrichment: addressing the polymerase chain reaction issue. Analytica chimica acta, 564(1), 91-96. https://doi.org/10.1016/j.aca.2005.09.069.
Krause, N. M., Bains, J. K., Blechar, J., Richter, C., Bessi, I., Grote, P., ... & Schwalbe, H. (2024). Biophysical Investigation of RNA⋅ DNA: DNA Triple Helix and RNA: DNA Heteroduplex Formation by the lncRNAs MEG3 and Fendrr. ChemBioChem, 25(10), e202400049. doi.org/10.1002/cbic.202400049.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Adil Al-Ogaili, Billy Hargis, Young Min Kwon
This work is licensed under a Creative Commons Attribution 4.0 International License.