Functional role of TGFβ1 -509C/T gene polymorphism in Susceptibility to preeclampsia in pregnant women

Functional role of TGFβ1 -509C/T gene polymorphism in Susceptibility to preeclampsia in pregnancy women

Authors

  • Omar Qahtan Yaseen
  • Parveen Jahan

DOI:

https://doi.org/10.51173/ijmhs.v2i1.20

Keywords:

TGFβ1-509C/T Gene, Preeclampsia, Gene Polymorphism, Hypertension, Proteinuria

Abstract

Background: Preeclampsia [PE] is a genetic and vascular disorder that occurs during pregnancy. It has multiple symptoms, including high blood pressure and protein in the urine. This disease results from poor blood supply to the placenta.             

Objective of study: The aim of the present study was to investigate the association between TGFβl promoter polymorphism -509C/T and PE in South Indian women. A candidate factor in the development of this disease is the immunoprotein (transforming growth factor β1 cytokine).

Materials and Methods: In this study, a total of 100 pregnant women were screened for functional polymorphisms of the TGFB1 gene [C-509 T], including 50 patients with PCS and 50 stable controls. While homozygous CC constituted 76% of PCS cases and 70% of normal healthy pregnant women, 24% of PCS cases and 30% of controls were heterozygous CT.

Results: The results showed that there were no significant differences. Statistically significant differences between preeclampsia cases and controls at this polymorphic site in genotype distribution and allele frequency. Molecular defects in this immunoprotein may lead to a defect in the regulation of the placental blood vessels, which affects the occurrence of apoptosis in target cells, and may also act as a major controller of the Th1/Th2 cytokine balance and the development of peripheral anti-inflammatory T cells [FOXP3 + Tregs].       

Conclusion: In conclusion, preeclampsia cannot be associated with polymorphisms in the TGF-beta1 promoter region at position -509 (C/T). In pregnant women, the clear urine that persists is produced by high TGF-b1 levels, and the function of the cells (glomerular cells) is responsible for raising TGF-β1 levels.

References

Roberts, J. M. (1994). Pregnancy-related hypertension. Maternal and Fetal Medicine, 832.

Berg, C. J., MacKay, A. P., Qin, C., & Callaghan, W. M. (2009). Overview of maternal morbidity during hospitalization for labor and delivery in the United States: 1993–1997 and 2001–2005. Obstetrics & Gynecology, 113(5), 1075-1081. DOI: 10.1097/AOG.0b013e3181a09fc0.

Roberts, J. M., Pearson, G., Cutler, J., & Lindheimer, M. (2003). Summary of the NHLBI working group on research on hypertension during pregnancy. Hypertension, 41(3), 437-445. https://doi.org/10.1161/01.HYP.0000054981.03589.E9.

Jebbink, J., Wolters, A., Fernando, F., Afink, G., van der Post, J., & Ris-Stalpers, C. (2012). Molecular genetics of preeclampsia and HELLP syndrome—a review. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1822(12), 1960-1969. https://doi.org/10.1016/j.bbadis.2012.08.004.

Wang, A., Rana, S., & Karumanchi, S. A. (2009). Preeclampsia: the role of angiogenic factors in its pathogenesis. Physiology, 24(3), 147-158. https://doi.org/10.1152/physiol.00043.2008.

Redman, C. W., & Sargent, I. L. (2010). Immunology of pre‐eclampsia. American journal of reproductive immunology, 63(6), 534-543. https://doi.org/10.1111/j.1600-0897.2010.00831.x.

Saito, S., & Sakai, M. (2003). Th1/Th2 balance in preeclampsia. Journal of reproductive immunology, 59(2), 161-173. https://doi.org/10.1016/S0165-0378(03)00045-7.

Saito, S., Shiozaki, A., Nakashima, A., Sakai, M., & Sasaki, Y. (2007). The role of the immune system in preeclampsia. Molecular aspects of medicine, 28(2), 192-209. https://doi.org/10.1016/j.mam.2007.02.006.

Dong, M., He, J., Wang, Z., Xie, X., & Wang, H. (2005). Placental imbalance of Th1-and Th2-type cytokines in preeclampsia. Acta obstetricia et gynecologica Scandinavica, 84(8), 788-793. https://doi.org/10.1080/j.0001-6349.2005.00714.x.

Raghupathy, R. (2001, August). Pregnancy: success and failure within the Th1/Th2/Th3 paradigm. In Seminars in immunology (Vol. 13, No. 4, pp. 219-227). Academic Press. https://doi.org/10.1006/smim.2001.0316.

Jahan, P., Sreenivasagari, R., Goudi, D., Komaravalli, P. L., & Ishaq, M. (2013). Role of Foxp3 gene in maternal susceptibility to pre‐eclampsia–A study from South India. Scandinavian journal of immunology, 77(2), 104-108. https://doi.org/10.1111/j.1365-3083.2012.02760.x.

de Lima, T. H. B., Sass, N., Mattar, R., Moron, A. F., Torloni, M. R., Franchim, C. S., & Daher, S. (2009). Cytokine gene polymorphisms in preeclampsia and eclampsia. Hypertension Research, 32(7), 565-569. https://doi.org/10.1038/hr.2009.58.

Clark, D. A., & Coker, R. (1998). Transforming growth factor-beta (TGF-beta). The international journal of biochemistry & cell biology, 30(3), 293-298. https://doi.org/10.1016/s1357-2725(97)00128-3.

Simpson, H., Robson, S. C., Bulmer, J. N., Barber, A., & Lyall, F. (2002). Transforming growth factor β expression in human placenta and placental bed during early pregnancy. Placenta, 23(1), 44-58. https://doi.org/10.1053/plac.2001.0746.

Li, X., Shen, L., & Tan, H. (2014). Polymorphisms and plasma level of transforming growth factor-Beta 1 and risk for preeclampsia: a systematic review. PloS one, 9(5), e97230. https://doi.org/10.1371/journal.pone.0097230.

Hsu, P., & Nanan, R. K. H. (2014). Innate and adaptive immune interactions at the fetal–maternal interface in healthy human pregnancy and pre-eclampsia. Frontiers in immunology, 5, 125. https://doi.org/10.3389/fimmu.2014.00125.

Lygnos, M. C., Pappa, K. I., Papadaki, H. A., Relakis, C., Koumantakis, E., Anagnou, N. P., & Eliopoulos, G. D. (2006). Changes in maternal plasma levels of VEGF, bFGF, TGF-β1, ET-1 and sKL during uncomplicated pregnancy, hypertensive pregnancy and gestational diabetes. In Vivo, 20(1), 157-163. https://iv.iiarjournals.org/content/20/1/157.short.

Singh, M., Orazulike, N. C., Ashmore, J., & Konje, J. C. (2013). Changes in maternal serum transforming growth factor beta‐1 during pregnancy: a cross‐sectional study. BioMed research international, 2013(1), 318464. https://doi.org/10.1155/2013/318464.

Fujii, D., Brissenden, J. E., Derynck, R., & Francke, U. (1986). Transforming growth factor β gene maps to human chromosome 19 long arm and to mouse chromosome 7. Somatic cell and molecular genetics, 12, 281-288. https://doi.org/10.1007/BF01570787.

Grainger, D. J., Heathcote, K., Chiano, M., Snieder, H., Kemp, P. R., Metcalfe, J. C., ... & Specter, T. D. (1999). Genetic control of the circulating concentration of transforming growth factor type β1. Human molecular genetics, 8(1), 93-97. https://doi.org/10.1093/hmg/8.1.93.

SYRRIS, P., CARTER, N. D., METCALFE, J. C., KEMP, P. R., GRAINGER, D. J., KASKI, J. C., ... & HEATHCOTE, K. (1998). Transforming growth factor-β1 gene polymorphisms and coronary artery disease. Clinical Science, 95(6), 659-667. https://doi.org/10.1042/cs0950659.

Kim, S. Y., Lim, J. H., Park, S. Y., Yang, J. H., Kim, M. Y., Kim, M. H., & Ryu, H. M. (2010). Transforming Growth Factor‐Beta1 Gene Polymorphisms in Korean Patients with Pre‐eclampsia. American Journal of Reproductive Immunology, 63(4), 291-298. https://doi.org/10.1111/j.1600-0897.2009.00795.x.

Feizollahzadeh, S., Taheripanah, R., Khani, M., Farokhi, B., & Amani, D. (2012). Promoter region polymorphisms in the transforming growth factor beta-1 (TGFβ1) gene and serum TGFβ1 concentration in preeclamptic and control Iranian women. Journal of Reproductive Immunology, 94(2), 216-221. https://doi.org/10.1016/j.jri.2012.02.006.

Wilson, M. L., Desmond, D. H., Goodwin, T. M., Miller, D. A., & Ingles, S. A. (2009). Maternal and fetal variants in the TGF-beta3 gene and risk of pregnancy-induced hypertension in a predominantly Latino population. American journal of obstetrics and gynecology, 201(3), 295-e1. https://doi.org/10.1016/j.ajog.2009.05.038.

Aguilar-Duran, M., Salvador-Moysén, J., Galaviz-Hernandez, C., Vázquez-Alaniz, F., Sandoval-Carrillo, A. A., Velázquez-Hernández, N., & Salas-Pacheco, J. M. (2014). Haplotype analysis of TGF-β1 gene in a preeclamptic population of northern Mexico. Pregnancy Hypertension: An International Journal of Women's Cardiovascular Health, 4(1), 14-18. https://doi.org/10.1016/j.preghy.2013.07.007.

Stanczuk, G. A., McCoy, M. J., Hutchinson, I. V., & Sibanda, E. N. (2007). The genetic predisposition to produce high levels of TGF-β1 impacts on the severity of eclampsia/pre-eclampsia. Acta obstetricia et gynecologica Scandinavica, 86(8), 903-908. https://www.tandfonline.com/doi/abs/10.1080/00016340701416945.

Daher, S., Sass, N., Oliveira, L. G., & Mattar, R. (2006). Cytokine genotyping in preeclampsia. American Journal of Reproductive Immunology, 55(2), 130-135. https://doi.org/10.1111/j.1600-0897.2005.00341.x.

Bell, M. J., Roberts, J. M., Founds, S. A., Jeyabalan, A., Terhorst, L., & Conley, Y. P. (2013). Variation in endoglin pathway genes is associated with preeclampsia: a case–control candidate gene association study. BMC pregnancy and childbirth, 13, 1-9. https://link.springer.com/article/10.1186/1471-2393-13-82.

Lahiri, D. K., & Nurnberger Jr, J. I. (1991). A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic acids research, 19(19), 5444. doi: 10.1093/nar/19.19.5444.

Mattey, D. L., Nixon, N., Dawes, P. T., & Kerr, J. (2005). Association of polymorphism in the transforming growth factor β1 gene with disease outcome and mortality in rheumatoid arthritis. Annals of the rheumatic diseases, 64(8), 1190-1194. https://doi.org/10.1136/ard.2004.031674.

Solé, X., Guinó, E., Valls, J., Iniesta, R., & Moreno, V. (2006). SNPStats: a web tool for the analysis of association studies. Bioinformatics, 22(15), 1928-1929. https://doi.org/10.1093/bioinformatics/btl268.

Barrett, J. C., Fry, B., Maller, J. D. M. J., & Daly, M. J. (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263-265. https://doi.org/10.1093/bioinformatics/bth457.

AG, D. (2007). OpenEpi: open source epidemiologic statistics for public health. http://www. OpenEpi. com. https://cir.nii.ac.jp/crid/1573950400678265088.

Djurovic, S., Schjetlein, R., Wisløff, F., Haugen, G., Husby, H., & Berg, K. (1997). Plasma concentrations of Lp (a) lipoprotein and TGF‐β1 are altered in preeclampsia. Clinical genetics, 52(5), 371-376. https://doi.org/10.1111/j.1399-0004.1997.tb04356.x.

Madazli, R., Aydin, S., Uludag, S., Vildan, O., & Tolun, N. (2003). Maternal plasma levels of cytokines in normal and preeclamptic pregnancies and their relationship with diastolic blood pressure and fibronectin levels. Acta obstetricia et gynecologica Scandinavica, 82(9), 797-802. https://www.tandfonline.com/doi/abs/10.1080/j.1600-0412.2003.00206.x.

Peraçoli, M. T. S., Menegon, F. T. F., Borges, V. T. M., de Araújo Costa, R. A., Thomazini-Santos, I. A., & Peraçoli, J. C. (2008). Platelet aggregation and TGF-beta1 plasma levels in pregnant women with preeclampsia. Journal of reproductive immunology, 79(1), 79-84. https://doi.org/10.1016/j.jri.2008.08.001.

Border, W. A., & Noble, N. A. (1998). Interactions of transforming growth factor-β and angiotensin II in renal fibrosis. Hypertension, 31(1), 181-188. https://doi.org/10.1161/01.HYP.31.1.181.

Showing the distribution of genotypes of TGF-β1 -509 C/T polymorphism

Downloads

Published

2025-03-05

How to Cite

Qahtan Yaseen, O., & Jahan , P. (2025). Functional role of TGFβ1 -509C/T gene polymorphism in Susceptibility to preeclampsia in pregnant women: Functional role of TGFβ1 -509C/T gene polymorphism in Susceptibility to preeclampsia in pregnancy women. Iraqi Journal of Medical and Health Sciences, 2(1), 17–22. https://doi.org/10.51173/ijmhs.v2i1.20

Issue

Section

General Biochemistry , Genetic and Molecular Biology